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a b s t r a c t

Over the last six decades there has been a consistent trend in the philosophy literature to emphasize the
role of causes in scientific explanation. The emphasis on causes even pervades discussions of non-causal
explanations. For example, the concern of a recent paper by Marc Lange (2013b) is whether purported
cases of statistical explanation are “really statistical” or really causal. Likewise, Michael Strevens (2011)
argues that the main task of statistical idealizations is to distinguish between the causal factors that
make a difference to the phenomenon to be explained and those that do not. But, the philosophy
literature poorly reflects the history of the development of statistical explanation in the sciences. Francis
Galton’s (19th century) explanation for the laws of heredity is our case. Galton’s statistical explanation
was both innovative for his time and influential to our contemporary sciences. The key points to un-
derstanding Galton’s statistical explanation for reversion is that it is autonomous from the real-world
biological properties that make up an instance of reversion while still being approximately true of
many real-world biological phenomena. Ours is an expanded discussion of ideas originated in Hacking
(1990) and Sober (1980). We will articulate these features and compare our account with that of
Lange and Strevens.

Published by Elsevier Ltd.

“The typical [statistical] laws are those which most nearly ex-
press what takes place in nature generally; they may never be
exactly correct in any one case, but at the same time they will
always be approximately true and always serviceable for
explanation” (Galton, 1877, p. 17)

1. Current trends in the philosophy of scientific explanation
are causal centric

As Michael Strevens (2012) reminds us, a great preponderance
of philosophical work in the area of scientific explanation has been
focused on the study of causal relations. The motivation for causal
approaches can be traced back to issues with Carl Hempel and Paul
Oppenheim’s account (1948) according to which many scientific
explanations involve deductions from premises stating a general-
ization and some initial conditions. But, as the well-known flagpole
case demonstrates, Hempel and Oppenheim’s deductive account
fails to adequately account for the explanatory role causal facts play.

We can derive the height of the flagpole from the length of its
shadow in the way required by Hempel and Oppenheim’s account,
but the unpalatable result is that the cause being explained by the
effect. Therefore, there is a problem calling derivations of flagpole
heights from shadows genuine cases of explanation. In contrast,
deducing the shadow from the height of the flagpole is a genuine
explanation because it cites causes to explain their effects.

According to Strevens, ever since the flagpole case, much of the
literature in philosophy of scientific explanation has set its agenda
accordingly to the following three questions:

1. What are causal relations?
2. How do deductive derivations and other semantic apparatus in

science represent causal relations?
3. Besides the need to represent the causal production of the

explanandum, what other norms govern the construction of
scientific explanations?

This agenda has produced an intellectually unsatisfactory liter-
ature in the philosophy of scientific explanation in several regards.
Here are three.

First, Strevens’ agenda neglects important scientific advances
that ought to guide philosophers’ discussions about the norms of
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scientific explanation. These important advances are typically
neglected because they do not easily conform to popular philo-
sophical accounts of good scientific explanation. Our case study is
just one instance: Francis Galton’s statistical explanation for what
he called the “law of heredity”: the processes of heredity maintain a
fixed distribution of variation across generations. We would expect
the explanation for a biological phenomenon to reference biological
mechanisms and processes. But, Galton’s explanation for this
phenomenon is surprising because his explanation only makes
reference to a mathematical result. The intergenerational stability
of the distribution of variation is a deductive consequence of the
distribution of variation of the previous generation. It matters not
whether the ensemble is composed of coin tosses, shots on target,
heights of soldiers, or biological characters, if the frequency of
characters in the ensemble is normally distributed (under ordinary
or equilibrium conditions) then it can be deduced that in the next
generation there will be a normal distribution of the same mean
and dispersion. Consequently, the exceptional characterswill revert
as a deductive consequence of the normal distribution (Hacking,
1990, p. 183).

Galton’s explanation was a first in biology. Galton’s novel use of
statistics to explain a real-world phenomenon led him to develop
the statistical techniques of correlation, linear regression, and a
variety of standards for goodness of fit between data and theory, all
still used by scientists. According to historian Stephen Stigler, Gal-
ton’s work “represents the most important step in perhaps the
single major breakthrough in statistics in the last half of the nine-
teenth century” (Stigler, 1990, p. 281). Further, Galton’s mathe-
matical theory of inheritance was the basis for the 20th century
synthesis of Darwinian natural selection and genetical theories of
inheritance. It also laid the groundwork for the development of
modern population and quantitative genetics (Fisher, 1953, p. 5).
For such an important scientific advance, one would think that
philosophers of science would pay more attention to it. But, while
the overall number of citations referring to Galton’s techniques
exceeds that of the flagpole literature by orders of magnitude, the
opposite is true within the philosophy of scientific explanation
literature.1

A second problem with the tradition that stems from Hempel
and the flagpole is that it has brought an over-emphasis on the role
of causes in scientific explanation.2 The current trend in the liter-
ature on non-causal explanation is concerned with a kind of
demarcation exercise: to determine whether purported cases of
explanation are genuinely non-causal or only appear to be non-
causal but are in fact truly causal. Examples include a mother
dividing 23 strawberries among three children (Lange, 2013a); why
it is impossible to walk through Königsberg and cross each of the
seven bridges once and only once (Pincock, 2007); how to explain
the periodicity of cidada life cycles (Baker, 2005); and the nature of
the differences between genetic drift and natural selection in the
modern theory of natural selection. (Lange, 2013b), (Walsh, Lewens,
& Ariew, 2002). We believe the demarcation question is largely
irrelevant to understanding the nature of Galton’s statistical
explanation for reversion and we shall criticize Marc Lange’s
(2013b) work accordingly.

The key points to understanding Galton’s explanation for the
law of heredity is that the statistical explanation is autonomous
from the real-world biological properties that make up an

instance of reversion while still being approximately true of
many real-world biological phenomena. Galton’s statement in
the epigraph is a good expression of the view. Galton’s reversion
explanation is autonomous in the sense that the mathematical
features of a statistical equation that Galton cites are sufficient to
explain biological reversion, even though the statistical equation
fails to accurately represent any real-world events that make up
any particular instance of reversion.3 The idealized statistical
explanation of reversion is sufficient on the condition (or to the
degree) that the frequency distribution of the trait in the popu-
lation is approximately normal. What determines the degree to
which a real world population approximates a normal distribu-
tion depends on minimal material requirements of the system,
namely that the ensemble is the result of numerous randomized
trials whereby the probability of the outcome of the one is in-
dependent of the probability of the outcome of any other. We
discuss the details below. To help clarify our position we
will contrast our account of the nature of Galton’s reversion
explanation with that of Marc Lange’s account of what makes
regression explanations “really statistical” as opposed to latently
causal.

A third problem with the entrenched Hempelian tradition is
that there is too much emphasis on univocal and general accounts
of scientific inquiry. We ought to recognize the possibility that
there exist multiple adequate accounts of good scientific expla-
nation. We will criticize Michael Strevens (2016) account of the
role of idealizations in scientific explanations in this regard. His
exclusive focus on causal-differencemakers fails to account for the
autonomy of statistical explanation. The point of Galton’s use of
the deductive features of a statistical law to explain regression is
not, as Strevens has it, to highlight causal-difference makers.
Rather, the point is that the statistical laws do all the
explaining without the need to refer to any causal features of the
ensemble.

We won’t extrapolate from the historical case to formulate a
universal account of all statistical explanations.4 Rather we hope
to learn some valuable lessons about best-case practicesdin this
case, Galton’s explanation for reversiondin order to extract some
norms of scientific explanation. We mean to reset the project of
the philosophy of scientific explanation by freeing it from the
tradition that automatically thinks about flagpoles and causal
relations. Our historical case refers not to philosophers, like
Hempel and Oppenheim, thinking generally about science, but a
scientist inventing a unique way of explaining a natural phe-
nomenon.5 To us, Galton’s explanation is exemplary: it represents
a norm of scientific explanation whose nature is not revealed by
answering the three questions Strevens lays out for us. Ultimately
we want to understand how the deductive properties of an
idealized representation of a biological phenomenon can be, in
Galton’s words, “approximately true and always serviceable for
explanation” of a real-world biological process. To fully appreciate
Galton’s innovation it is important to note the state of statistical
methodology at the time of Galton’s writing. As you shall see, by
articulating Galton’s response to the pioneers of the statistical
methodology we will have a deeper understanding of the aspects
of Galton’s explanation we are highlighting.

1 Exceptions include: Hacking (1990), Sober (1980), Lipton (2009), Lange (2013a,
2013b), Gayon (1998), Ariew, Rice and Rohwer (2015), Radick (2011).

2 Even Strevens’ third question is dependent on an account of causation because
in order to articulate the “other norms” we need to know what distinguishes them
from the norm of representing causal production.

3 We adopt Ian Hacking’s (1990) concept of “autonomy” account for the nature of
the Galton’s innovative statistical explanation. See also Sober (1980) and Ariew
et al. (2015).

4 We consider other cases in science in Rice, Rohwer, Ariew (in prep.), “Explan-
atory Schema and the Process of Model Building”.

5 We certainly don’t claim originality for this way of doing philosophy of science.
The works of Nancy Cartwright are exemplary.
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2. Galton on the statistical laws of heredity

The title of Galton’s, 1877 address to the Royal Institution of
Great Britain is “Typical Laws of Heredity”. His aimwas to explain a
peculiar large-scale ensemble effect of heredity.6 In each generation
we detect a great deal of individual variation of heritable charac-
ters. Individuals are tall and short, heavy and light, strong and
weak, and the variations admit of every gradation in between. But,
Galton claims, from the view of averages, all biological characters
exhibit a puzzling order undetectable from measurements of in-
dividual differences: the proportions of various types is constant.
And, despite the various comparisons between individuals and
their offspring, heredity preserves the fixed distribution spread of
characters over the course of generations on the condition that
external circumstances remain constant. Galton writes that from
the statistical point of view “uniformity prevails” and that “the
processes of heredity are found to be so wonderfully balanced, and
their equilibrium to be so stable, that they concur in maintaining a
perfect statistical resemblance” (Galton, 1877, p. 3). Throughout the
essay Galton provides a smattering of evidence of this “law of he-
redity”, from the geological record to published statistical charts to
the results of his own experiment with pea plants.

The law of heredity has negative consequences for natural se-
lection. Ordinarily, tall, heavy, or strong couples tend to produce
tall, heavy, and strong children. Likewise short, light, and weak,
couples tend to produce short, light, andweak children. However, it
is rare for children to maintain the identical features of their par-
ents. In general, like does not beget like. Nevertheless, surprisingly,
tall children are rarely taller than the tallest parent, and, over the
course of generations, tallness does not tend to maintain itself in
the lineage. The extreme pairings do not affect the stability of the
distribution pattern that the law of heredity describes. The fre-
quency or measurement of either the extremely tall or the
extremely short does not increase. Rather, the extremes appear to
“revert” to the populationmean. This is a problem for any process of
selection. Pigeon breeders selecting for an extreme shade of grey
among their stock hope to eventually produce a generation where
the desired character is more common. But, the reversion effect will
thwart their progress.

The stability of the law of heredity also confounds selection for
mean characters, not just the extremes. Galton illustrates with a
hypothetical example of a race containing 100 giants and 100
medium-sizedmen. Considering the known hardships befalling the
life and reproductive capacities of giants, we would expect the 100
mediummen to be more fertile, more likely to breed with like kind,
and be “better fitted to survive hardships, &c”. Giants are known to
suffer from a consumptive constitution and “languid” circulation.
Their kind is also likely to be diluted by marriage. For reasons such
as these, we should expect there would be fewer giants and more
medium-sized men in the second generation than in the first. But,
according to the law of heredity, the proportion of giants to
medium-sized men in the first generation will remain the same in
the second generation. Galton concludes: “The question, then, is
this: How is it, that although each individual does not as a rule leave

his like behind him, yet successive generations resemble each other
with great exactitude in all their general features?” (Galton, 1877, p.
2).

As historian Stephen Stigler points out, Galton’s presentation is a
more articulate version of a problem that Fleeming Jenkin recog-
nized in his 1867 review of the Origin of Species (Stigler, 2010). The
medium-sized men in the thought experiment have heritable ad-
vantages over the giants in the struggle for life. Yet, the balancing
forces of heredity prevent selection from fundamentally altering
the stable frequency of variation. In the Origin of Species, Darwin
claimed that the effects of “reversion” was an exaggeration and
natural selection would eventually overcome any such barriers. It
would turn out that Darwin was right, but it took 20th century
evolutionists, like R.A. Fisher to show it, and he did so, within the
framework of Galton’s explanation for the stability of heredity.
Galton’s aim in the 1877 essay was not to solve the problem for
Darwin but to explain why the distribution of characters is stable
over the course of generations.

2.1. The law of deviation and Quetelet’s chart of heights

Galton declares that we gain an insight into the puzzle of he-
redity whenwe bring to bear Adolphe Quetelet’s discovery that the
shape of the constant distribution of characters tends to conform to
a precise mathematical law: “the amount and frequency of devia-
tion from the average among members of the same race, in respect
to each and every characteristic, tends to conform to the mathe-
matical law of deviation.” (Galton,1877, p. 2). The law of deviation is
Galton’s term for what was otherwise known as the “law of errors”,
first introduced in the 18th century by themathematician Abraham
de Moivre as a graphical expression of the outcome of coin tossing
trials. Toss a coin n-times and indicate the proportion of heads to
the total number of tosses on the x-axis of a graph from 0 to n. The
y-axis represents the number of times in the sequence of trials
where the coin lands heads. As the number of tosses increases, n
gets larger (without bound), the resulting graph increasingly re-
sembles a bell-shaped curve with its peak at the mean value and
sloping sides representing the amount of dispersion around the
mean (see Hacking, 1990).7 Ever since de Moivre, natural philoso-
phers believed that the statistical stabilitydexpressed as a math-
ematical equationdwas a sign of divine intervention, and, as such,
had wider application. In 1844, Quetelet introduced the idea that
most, if not all, human attributes, from height to moral attitudes,
conform to the law of error. Galton goes one step further by
extending the scope of the law to all biological characters and
changes the name to the “law of deviation”. The “curve of error”
becomes, in Galton’s later writing, the “normal distribution”. The
name changes are relevant when we discuss the differences be-
tween Quetelet and Galton’s methodology in a later section of this
essay.

To illustrate how human heights approximate the normal dis-
tribution, Galton reproduces Quetelet’s statistical table on heights
of American, French, and Belgian soldiers (see Fig. 1). The data is
arrayed in ascending order from tallest to shortest. In each series
there are two columns titled “observed” and “calculated”. The
numbers therein represent the frequency of individuals that
correspond to the unit measured. “Calculated” refers to frequencies

6 Galton’s statistical explanation for the “laws of heredity” is not Galton’s only
concern. He had theories about the mechanisms for transmission as well. He
adopted a gemmule theory in which hereditary material is transmitted by the
blood. See Radick (2011) for a good discussion. However, as Hacking (1990) points
out, Galton recognized his statistical explanation as a distinctive achievement quite
apart from his mechanistic theories of heredity. The account we provide is not
affected at all by the specifics of Galton’s theories of transmission beyond the
justification of his statistical assumptions. That’s because the explanandum is how
the distribution of statistical variation is maintained over generations, not how
individual differences aggregate to produce a variational pattern.

7 Today we would say that de Moivre identified the conditions for the binomial
distribution, a special case of the central limit theorem developed by LaPlace and
Gauss. The central limit theorem has much wider application because it appears in
different scales and different domains, from processes that aggregate fluctuations
from an average value. The aggregates can be additive, multiplicative, even distri-
butions on the log scale (McElreath, 2015, p. 78, p. 78).
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of an abstract population that approximates the mathematical law
of error. The “striking” fact that Galton wants us to see from the
charts is that despite differences between the three nationalities, in
all instances, the observed height distribution closely resembles or
approximates the calculated distribution from the law of deviation,
meaning that height and strength distribution for each population
more or less conforms to the normal distribution just as the law of
deviation dictates.

To Quetelet the significance of the chart of heights is that each
nationality has its own signature “curve of error”, each with a
distinct mean. (This is the idea behind Quetelet’s famous concept of
the “average man”.) Quetelet cites this as evidence that there are
essential developmental differences between Americans, French,
and Belgians. But, Galton’s explanatory aims are distinct. He intends
to explain the universality of the law of deviation in biological
characters, both across disparate populations and over the course of
generations within a reproducing population. He writes: “although

characteristics of plants and animals conform to the law, the reason
of their doing so is as yet totally unexplained.” That’s why the
different height means don’t matter to Galton, as they do to
Quetelet.

Why does conformity of the data to the normal distribution
matter to Galton? Galton’s aim, his method for explaining the law
of heredity, is to turn a biological problem into a mathematical
problem. Galton states his aims clearly:

“The outline of my problem of this evening is, that since the
characteristics of all plants and animals tend to conform to the
law of deviation, let us suppose a typical case, in which the
conformity shall be exact, and which shall admit of discussion as
a mathematical problem, and find what the laws of heredity
must then be to enable successive generations to maintain
statistical identity.” (Galton, 1877, p. 4)

Fig. 1. Aldolphe Quetelet’s published chart on the height of American, French, and Belgian soldiers, reproduced in Galton (1877).
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But, before Galton can treat the puzzle as a mathematical
problem he has to justify why he is doing so. He has to explain how
is it possible for a real-world ensemble of characters to obey the law
of deviation. Strictly speaking, the law of deviation is an idealiza-
tion. No real-world ensemble of characters is normally distributed.
The bell-shaped curve it generates reflects the parameters of a
mathematical equation. As we see in de Moivre’s coin tosses and
Quetelet’s chart of soldier heights, real-world ensembles can only
tend to conform to the normal distribution as the number of in-
dependent samples increase (without limit). But, coin tosses and
the biological processes involved in determining soldier heights are
physically disparate. How do such disparate systems conform to a
single statistical distribution curve?

The answer is that the requirements for a real-world population
to approximate the normal distribution are minimal. We call these
the “minimum material conditions”: There needs to be a process
where the events are randomly sampled. The sample size needs to
be relatively large. And, the sampling outcomes must be indepen-
dent, meaning that the outcome of one event or trial has no effect
on the outcome of any other. Sample size matters because
approximation or conformity is a matter of degree. While the
sample of heights show rough conformity, we can presume that a
larger sampling of heights will conform to an even greater degree.
Galton assumes that even the rough conformity justifies modeling
solider heights with the idealized law of deviation.

To demonstrate how a real-world process that features the
minimum material conditions aggregates to approximate the
normal distribution, Galton utilized a “quincunx”, a mechanical
apparatus that he devised for the address.

The quincunx is a shot-dropping machine with a glass face,
resembling a Japanese pachinko machine (see Fig. 2). At the top is a
funnel from which to drop small pellets. Upon passing the narrow
neck of the funnel the pellets cascade across an array of 17 rows of
offset spikes. The pattern of spikes is where the name “quincunx”
comes fromeit resembles the mesh pattern like those of fisher-
men’s nets. At the bottom of the machine is a row of compartments
separated by a thin wall. This is the final resting place for the

dropped pellets. Galton writes: “I will pour the pellets . from any
. point above the spikes; they will fall against the spikes, tumble
about among them, and after pursuing devious paths, each will
finally sink to rest in the compartment that lies beneath . "
(Galton, 1877, p. 5). When encountering each of the numerous rows
of spikes, the pellets fall either right or left. In the commonest case a
pellet falls to the right and left with equal frequency and comes to
rest at centere directly below the point at which it was dropped.
Less commonly a pellet falls to one side more frequently than to the
other, and its final resting spot is some distance to the left or right of
center. The pellets resting at the greatest distance from center are
rarest, because they require a long run of falling to the same side of
each pin they encounter. The result of all these runs is a pile of
pellets whose outline resembles the normal distribution.

The quincunx simulation shows what de Moivre showed with
coin tosses could be applied to heights, or, presumably other he-
reditary characters. The law of deviation is widely applicable
because, although it is never precisely replicated in any real-world
finite population, many real-world ensembles feature the minimal
material conditions to generate a bell-shaped distribution pattern.
Galtonwrites: “the law of deviation is purely numerical; it does not
regard the fact whether the objects treated of are pellets in an
apparatus like this, or shots at a target, or games of chance, or any
other of the numerous groups of occurrences to which it is or may
be applied” (Galton, 1877, p. 7).

Galton can now turn a puzzle about biological heredity into a
mathematical problem. The original question, why do processes of
heredity concur to “maintain a stable statistical resemblance”? can
be restated: how is the normal distribution maintained over the
course of generations? Galton will eventually answer with a
modified version of his quincunx. But, first, hemust show the law of
heredity applied in a biological case. Neither Quetelet’s chart of
heights nor the first quincunx demonstration has a hereditary
component. To remedy, Galton reports on a breeding experiment
on sweet peas that he conducted some time earlier.

2.2. Galton’s sweet peas

Galton chose the sweet pea for his experiments after consulting
with Darwin. The peas are hardy, convenient, and, most impor-
tantly, they don’t cross-fertilizeda confounding factor in the study
of heredity. First he arrayed thousands of seeds according to the
frequency distribution of weight. Out of that lot, he selected nine
sets, each containing seven packets with ten seeds of identical
weight. The first packet contained the giant seeds, þ3 degrees of
deviation, the seventh the very small seeds, "3 degrees of devia-
tion, and the rest contained the intermediates, each marked by a
distinct degree of deviation from the mean of the original popu-
lation of thousands. He sent the sets to a variety of friends and
acquaintances in the UK, Darwin included, instructing each of them
to plant and report the produce in terms of the distribution of seed
weight among the offspring. We do not knowwhich packet Darwin
possessed. Two sets were failures but among the seven packets
returned (containing 490 carefully weighed seeds in total) the final
result conformed to the law of deviation. Had it been the case that
heredity follows the simple rule, like begets like, the extreme sizes
would have reshaped the whole distribution curve towards more
extremes. But, that is not what the experiment yielded. The seed
weight within each packet was normally distributed and equally
dispersed. And each was distributed about a value that was closer
to the average population weight than the average of their parents.
The overall population, including the extreme groups, reverted to
the original mean of the overall parental population. The sweet pea
experiment demonstrated that the processes of heredity conspiredFig. 2. Galton’s quincunx that still exists in University College, London.
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to maintain an approximately normal distribution of seed charac-
teristics over two generations.

In sweet peas, the law of heredity holds; i.e. the frequency dis-
tribution of traits is stable across generations. Now, we’re back to
the original question: why does the law of heredity hold for bio-
logical heredity? Recall, the first quincunx didn’t answer that
question. The first quincunx demonstrated why Galton’s statistical
assumptiondthat the distribution of characters approximates the
normal distributiondis justified. It is justified because the world is
full of approximately normal distributions. That is, the world is full
of populations whose characters we can treat as numerous random
trials with independent outcomes. The normal distribution de-
scribes the aggregation of these sample trials. As Galton tells us at
the outset, his methodology to explain why biological heredity
maintains the normal distribution over the course of generations is
to assume a case where the conformity to the normal distribution
is exact, “which shall admit of discussion as a mathematical
problem” (Galton, 1877, p. 4). Ironically, Galton’s address contains
no math (except in an appendix). Rather, he simulates the mathe-
matical results with a thought experiment involving a modified
quincunx.

2.3. Deduction and quincunx 2.0

Galton’s virtual quincunx contains a second field of pins beneath
the compartments of the original quincunx (see Fig. 3). 8 The in-
dividual compartments are also modified; each has a trap door
underneath them. Each pellet begins their run from the compart-
ment that they settled into during the first run. The pellets in the
right-most compartments represent the heaviest seed type; the
lightest are in the left-most compartments. These pellets are then
dropped from each of the trap doors, bounce around the spikes and
settle on the bottom, each forming a normally distributed heap of
pellets. When all the groups are merged into one, the shot again
arrays itself into a normal distribution composed of the aggregate
of the distributions of the subsets. This “grand normal” distribution
is just the aggregate of the normal distributions found in each of the
subgroups. As Galton explains, “Heap adds itself to heap, and when
all the pellets have fallen through, we see that the aggregate con-
tributions bear an exact resemblance to the heap from which we
originally started” (Galton, 1877, p. 8).

This is the same result seen in the sweet pea breeding experi-
ment. When taken together, the offspring of all the individual sets

of cultivated seeds were normally distributed around themean, not
of each packet, but of the entire parental population. Likewise, the
offspring of parents from each category of size were normally
distributed. The sweet pea experiment acted exactly in theway that
the quincunx predicts. Galton writes: “The conclusion is. that the
processes of heredity must work harmoniously with the law of
deviation, and be themselves in some sense conformable to it.”

In a later book, Natural Inheritance,9 Galton explains reversion
with his quincunx (see Fig. 4)10 When pellets in the top half of the
quincunx are released their average end point is directly below. But,
what of pellets resting in a lower-level compartment: where do
they come from? The answer to the second question is not “directly
above”. Rather, on average, the pellets at the bottom of the quin-
cunx come from a compartment towards themiddle of the previous
generation. This is because in a normally distributed ensemble, the
number of pellets gets larger as we count from the outermost
compartments inwards towards the center. So, there are more
pellets that can wander from the center towards the extremes than
there are pellets that can wander from the extreme towards the
center. In his 1889 book Galton no longer calls the phenomenon
“reversion”, which traditionally indicated an empirical phenome-
non well known to Darwin’s contemporaries. Rather, Galton calls
it “regression”, Stigler concludes: “Galton’s great insight from this
new approach was that stability implied . regression. [T]he entire
puzzle was resolved by this one fundamental insight” (Stigler, 2010,
p. 477). The insight is that intergenerational stability could be
explained by reference to the mathematical properties of the law
of deviation, modeled by the quincunx which instantiates the
minimal material conditions required for the law of deviation to
hold.

3. Galton’s statistically autonomous explanation vs.
Quetelet’s statistical reductive explanation

According to Ian Hacking (1990), Galton’s explanation for the
law of heredity and reversion was unique in science. It was the first
instance of what Hacking calls “statistically autonomous” expla-
nation. Autonomy stands in contrast to reduction but without
commitment to metaphysical antireductionism. Galton was not
arguing that any one instance of the heredity law in action was
irreducible to underlying deterministic principles. Rather he was
explaining a biological phenomenon while leaving out the

Fig. 3. A drawing from Pearson’s biography based on a letter from Galton to George Darwin, reproduced in Stigler (1986, p. 278).

8 Reproduced from (Stigler, 2010). The drawing comes from Pearson’s biography
based on a letter from Galton to George Darwin.

9 At this point Galton has already discovered the analytic powers of regression.
See Stigler (2010).
10 Taken from Stigler (2010). Stigler drew in the arrows.
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biological details. Galton attributes to Quetelet the central statis-
tical insight for his explanation of the law of heredity. But, it was
Galton who invented the statistically autonomous explanation for
the law of heredity. Quetelet did not. That is because between
Galton and Quetelet, the distribution patterns and conditions that
generated each graphical curve were the same but the biological
interpretation was distinct (Ariew, Rice, & Rohwer, 2015). The aim
of Quetelet’s “social physics” was to identify the essential differ-
ences between races and populations, as exemplified by the chart of
soldier heights that Galton showed his 1877 audience. The different
means were relevant for Quetelet’s inquiry, the dispersion was
“error”, or more precisely, the reflection of “accidental causes” of
development. Hence, following de Moivre, the statistical law was
the “law of error” and its graphical representation the “curve of
error”.

Galton’s project, however, was to explain the maintenance of
the distribution (same means, same dispersion) over the course of
generations. Both the means and the tail ends of the distribution
curve matter for Galton. Hence Galton renamed the statistical law
“the law of deviation” and its graphical representation the “normal
distribution”.

In order to see the differences between these two approaches to
applying statistical modeling techniques, let’s look a little more
closely at Quetelet’s explanatory project. Quetelet’s project provides
the historical context to see what made Galton’s statistical expla-
nation unique and why Hacking is right to contrast Galton’s “sta-
tistically autonomous” explanation from reductive explanations.11

Quetelet was an astronomer turned social scientist. From
observational astronomy he borrowed the ideaepioneered by
LaPlace and Gaussethat the appearance of the bell-shaped distri-
bution pattern for observational data reveals the difference be-
tween “error” and “truth”. The pressing problem in observational

astronomy was to determine the trajectory of a planet. A technician
had to rely on the various observations made by different astron-
omers at different times and places with a variety of observational
techniques, taking into account that many reports were fraught
with error. LaPlace and Gauss’s insight was to attend to the
aggregate of the observations, not any subset. The larger the
number of observations, the more likely the observational errors
will, as it were, get swamped by the preponderance of data, which
tends to conform to the planet’s true trajectory (assuming the ob-
servations meet the minimal material conditions of being
numerous and independent). Quetelet defined his ‘‘fundamental
principle’’ of social physics accordingly: ‘‘the greater the number of
individuals observed, the more do individual peculiarities, whether
physical or moral, become effaced, and leave in a prominent point of
view the general facts, by virtue of which society exists and is pre-
served’’ (Quetelet, 1835, p. 6, his italics). But, rather than dis-
tinguishing “error” from “truth”, Quetelet was distinguishing
between “constant” and “accidental” causes of human develop-
ment. The average or mean value reveals information about the
“constant” developmental causes of height: if the constant causes
of development were acting alone, every individual Belgian soldier
would attain the same height.12 Dispersion around the mean is the
effect of the various external “disturbing” causes preventing each
Belgian soldier from attaining the true height of its race. Differences
between the Belgian, French, and American averages is evidence of
the differences in developmental causes between the groups.

Now we see why Quetelet called the bell-shaped distribution
pattern the “curve of error”. The disturbing causes create error.
They misrepresent the normal state of the population. As Elliott
Sober put it, “For Quetelet, the point of attending to variationwas to
see through itdto render it transparent. Averages were the very

Fig. 4. An illustration of the regression phenomenon, reproduced in Stigler (2010).

11 Margaret Morrison (2014) has an excellent discussion of “irreducibly statistical
phenomenon” that differs in some ways from our account.

12 Just as if every pellet that fell from its funnel experienced no interfering pin,
each would hit the bottom of the quincunx in exactly the same place.
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antithesis of artefacts; they alone were the true objects of inquiry”
(Sober, 1980, p. 36).

Quetelet’s analysis of population averages had broad and
important implications for the burgeoning field of sociology. He
developed an early form of analysis of correlation13 to explain a
puzzling phenomenon first discovered in the 17th century and
persistent in the census tabulations for every region in the world.
Despite the variation in households of numbers of male and female
births, the aggregate yields a stable sex ratio skew towards male
births. The consensus explanation (from DeMoivre, among others)
was divine intervention. But, Quetelet applied his analysis of av-
erages across various tabulations to come up with a hypothetical
cause. The method involved comparing the sex ratios among
various sub-populations against the overall average and seeing
which category of tabulation made the difference. Averages were
unaffected by a host of comparisons: urban vs. rural births, warm
vs. cool climates, higher vs. lower elevations. But, he found a dif-
ference in comparing births from married couples and from “ille-
gitimate” arrangements. The excess of males to females that is
indicative of the entire European population (5%) is the same as the
excess among children from married couples and more than the
excess among illegitimate children (3%). Assuming that in married
couples’males tended to be older than females, Quetelet concluded
that the relative ages of the parents physiologically influence the
sex of the offspring. This is a good example of Quetelet’s reduc-
tionistic statistical methodology that seeks to use averages to un-
cover the underlying causes of the population’s distribution. For
Quetelet, only the averages in a curve of error matter because they
allow us to discover the true causes of development.14

Galton, however, was aware that Quetelet’s social physics could
not explain the law of heredity. Galton writes:

“let me point out a fact which Quetelet and all writers who have
followed in his path have unaccountably overlooked, and which
has an intimate bearing on our work tonight. It is that, although
characteristics of plants and animals conform to the law, the
reason of their doing so is as yet totally unexplained” (Galton,
1877, p. 8).

You don’t sufficiently explain the intergenerational stability of
the normal distribution by stating that the normal distribution is
the product of a host of a lot of independent causes. As Galton puts
it “the processes of heredity that limit the number of the children of
one class, such as giants, that diminish their resemblance to their
fathers . are not petty influences, but very important ones” (p. 8).

The answer Galton is seeking is found in the statistical conse-
quences of any real-world population (from coins to pellets in the
quincunx to biological hereditary processes) that approximately
conforms to the idealized law of deviation. Conformity to the
idealized law of deviation is the consequence of the aggregate of
the host of independent causes, as the first quincunx demonstrates.
But, the explanation of the law of heredity is not found by attending
to these instances.

In reflecting upon the kind of explanation Galton has provided,
he writes the account description found on the epigraph of this
essay. Hacking cites this passage as evidence that Galton was aware
of the novelty of his explanation (Hacking (1990), p. 180). Sober
(1980) concurs.

3.1. Galton’s explanatory methodology: a summary

In our presentation we described Galton’s explanatory meth-
odology along the way. It would be useful now to lay it out before
comparing Galton’s account of statistical explanation with that of
Lange and Strevens.

Galton’s explanandum is the law of heredity: the intergenera-
tional maintenance of variation over the course of generations. He
is asking, Why do the processes of heredity concur to maintain
statistical resemblance? Galton’s explanatory strategy is to begin
with a statistical assumption: hereditary characters approximate the
normal distribution, the graphical representation of the law of
deviation. The purpose of the assumption is to treat the biological
phenomenon as a mathematical problem.15 With the first quincunx
he provides justification for his statistical assumption. Nature is full
of processes that generate a normal distribution because the ma-
terial requirements are so minimal: the character samples resemble
trials of numerous independent events.16 The phenomenon to be
explained is a mathematical consequence of the law of deviation.
Galton demonstrates this with modifications of the first quincunx.
If a population of characters is approximately normally distributed
then it can be deduced that in the second generation there will be a
normal distribution of about the same mean and dispersion,
assuming that the external conditions remain constant. A conse-
quence of this deduction is the phenomenon of reversion. The
exceptional members of the offspring generation will typically not
be descendant from the exceptional members of the parent gen-
eration. (Hacking, 1990, p. 186). This is Galton’s mathematical
interpretation of the laws that the biological processes must concur.
Galton’s explanation is statistically autonomous because he is
explaining a biological phenomenonwithout referring to any of the
causes underlying any particular instances of the phenomenon. He
interprets the deductive features of the normal distribution as
“approximately true” of any instance of the law of hereditydnever
exactly truedbut due to its generality and approximation, “always
serviceable for explanation.”17

4. Galton versus Lange and Strevens on statistical explanation

Let’s compare our analysis of the explanatory structure of Gal-
ton’s explanation of the laws of heredity with that of two of our
contemporaries, Marc Lange and Michael Strevens. Both are in
some way or other committed to the Hempelian program we dis-
cussed at the outset where inquiry into scientific explanation is
focused on questions concerning causation. Lange is concerned
with demarcating between causal and non-causal, statistical ex-
planations. Strevens is concerned to identify the role that causal
factors play in idealized statistical explanation.

4.1. Lange’s “really statistical explanation”

In a recent paper, Marc Lange (2013b) argues that regression
explanations are a distinct kind of statistical explanation. They are
“really statistical” because they show the result to be merely a
“statistical fact of life”. In contrast, some statistical explanations are

13 R.A. Fisher (1953) acknowledges that Quetelet’s is a precursor to his own
‘‘analysis of variance’’.
14 It is worth noting that Darwin referenced Quetelet’s conclusion to his study on
ratio skew in a notebook entry dated just after he read Malthus on populations. For
a detailed discussion see (Ariew, 2007).

15 See also Ariew et al. (2015).
16 Aidan Lyon (2014) provides compelling reasons why there is more to the story
about why normal distributions are normal.
17 Stephen Stigler (2010, p. 478e479) notes that in 1889, philosopher and psy-
chologist, Hiram M. Stanley correctly pointed out that heredity and environment
were inextricably confounded in Galton’s data, hence, rendering his model of he-
redity tenuous. While Galton never replied to Stanley, R.A. Fisher successfully uti-
lized Galton’s theoretical model to construct the fundamental mathematical basis
for Mendelian genetics.
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causal because they invoke relevant features of the event’s causal
history. To illustrate the difference, Lange describes the results of a
fair coin tossed 100,000 times (p. 171). Bracket out runs of 20
consecutive tosses beginning with toss numbers that differ by 10,
e.g. toss numbers 1, 11, 21. Neighboring runs share 10 tosses. So, a
run with more than 10 heads tends to be followed by another run
with more than 10. But, runs with exceptionally high number of
heads tend to be followed by runs of fewer numbers of heads
simply because the probability of such a high number of heads is
always low compared to the other possible outcomes. The causal
explanation invokes the relevant features of the coin and tossing
mechanism that determine its fair propensity (assuming that each
toss outcome is independent of the others). The chance that a run
with an exceptionally high number of heads will be followed by a
run with fewer heads is high. It is just the chance that at least one
tails will appear in some number of tosses following the excep-
tional high number of heads. Lange tells us that for 10 tosses, the
chance that at least one tails appears is 1 e (0.5)10 ¼ 1023/1024.
According to Lange, this explanation is causal because “it explains
by virtue of describing relevant features of the result’s causal his-
tory” (p. 172).

An alternative explanation invokes regression to the mean.
Accordingly, it suffices to say that we should expect runs of heads to
follow from runs of tails as “fallout from the statistical character of
the case”. There is no need to invoke the coin’s propensities or facts
about the tossing mechanism because, according to Lange, the
explanation is not “deepened” by these physical facts. A regression
explanation states the mere fact “there is a statistical association
between the outcomes” of overlapping coin toss runs. In general,
what’s required of Lange’s “really statistical” explanations is only
that they identify a “particular signature of statistical processes that
the explanandum exemplifies” (p. 177).

Lange detects a bright line between the causal and statistical
explanation because he is leaving out relevant details for each ac-
count. If we put back in the details of the two explanations, the two
cases appear to be two ways of providing the same kind of
explanation.

Let’s start with the “causal” explanation. Lange claims that the
relevant features are the causal historical details about the coin
tossing set up. But, take Galton’s explanatory strategy as a model
and you see that what is significant about the coins are not the
forces of the tossing mechanism or the airborn trajectories of each
coin in the actual experiment. Rather, the relevant features are
those minimum material conditions about the coin tossing set up
that allow us to treat the puzzle about the coins as a mathematical
problem from which Lange provides his calculations. The relevant
causal information establishes that there are two equiprobable
outcomes for each trial (heads or tails with a fair coin), the tosses
are independent, and numerous (100,000). Violate any one of these
conditions and Lange’s calculations from an idealized equation
would appear to be inapplicable to the real-world case. Further,
Lange assumes that the actual coin flips approximate the conditions
require to apply the standard axioms of probability theory, as first
described by Russian mathematician A.N. Kolmogorov in 1933.
Otherwise, his calculation, for 10 tosses, the chance that at least one
tails appears is 1 e (0.5)10 ¼ 1023/1024, is not applicable to the
chances of a coin.

Turning to Lange’s “really statistical explanation”, without the
statistical assumption that the coin tosses conform to the law of
large numbers (among others), references to a “particular signature
of statistical processes that the explanandum exemplifies” has no
real-world referent because all real-world cases can only approxi-
mate the statistical equations used in the explanation. Put differ-
ently, this is not an explanation of the coin tosses unless the coin
tossing set up is shown to approximate the idealized law of

regression. But this is just to say that the minimal material condi-
tions and their connection to the mathematical treatment of the
problem are also required for the really statistical explanation.

Lange ignores the roles of what we’ve been calling “approxi-
mation” and “minimal material conditions” in the background as-
sumptions of both his causal and really statistical explanation for
coin tossing regression. Perhaps the oversight is due to his focus on
his prior commitment to the kind of causal-centric accounts of
scientific explanation that we described at the outset.

4.2. Strevens’ kairetic account

Michael Strevens’ account of explanations for large-scale effects
is encapsulated in his “Kairetic account” (Strevens, 2011). But, more
recently, he offers a more general account of the explanatory power
of idealized explanations, explanations that involve some degree of
distortion of reality (Strevens, 2016). Accordingly, “the role of
idealization. is to indicate that certain factors make no difference
to the phenomenon to be explained” (p. 2). And, by “certain fac-
tors”, and “difference making”, Strevens is referring to causes.

A virtue of Strevens’ account is that it applies to both explana-
tions of individual events and more abstractly to ensemble regu-
larities. An explanation for the extinction of a particular species, for
example, requires that “only aspects of the causal history that made
a difference to whether or not the event occurred earn a place in an
explanatory model” (p. 4). Other factors causally contribute to how
the extinction occurred, like the fact that individuals living in a
particular region died out first or the exact date of the final death.
But, on Strevens’ account, these should not be part of an idealized
explanation unless they also made a difference to the fact that the
extinction occurred.

An explanation for an abstract regularity such as gases’ con-
forming to Boyle’s law also follows the same causal abstraction
procedure, according to Strevens. An explanation “describes just
those aspects of the causal process thatmake a difference to the fact
that a gas follows the curve”. Causal facts about the gas that merely
affect how the gases follow the curve in an individual case are
irrelevant to the explanation. So, a good explanatory model for the
Boylean patterns omits all those factors particular to any individual
instance of conforming to Boyle’s law and “replacing them with an
abstract specification of the gas’s properties that is instantiated both
by gases that have collisions and those that do not, by gases in
which there are long-range attractive forces between molecules
and those in which there are not, and so on” (p. 4).

Strevens’ account falters when he insists on the generality of his
difference making explanation procedure: “Idealizations across the
sciences should be interpreted in the same way” (p. 5). From the
outset we warn against over generalizing from a philosophical ac-
count of scientific explanation or idealization.18 In this case,
Strevens fails to recognize Galton’s statistically autonomous
explanation for the laws of heredity as a genuine explanation.
Galton’s explanatory strategy is not as Strevens’ describes. Galton’s
use of an idealized statistical model (or equation) is not about
distinguishing between genuine causal difference makers and non-
difference makers of any particular features of biological heredity.
Rather, the strategy is to treat the biological phenomenon to be
explained as a mathematical problem. To this end, Galton demon-
strates with the quincunx that the idealized mathematical law of
deviation applies to a wide range of real-world phenomenon
because many real world processes feature the minimum material

18 Another issue is that Strevens’s account seems to leave little room for a clear
distinction between the roles of idealization and abstraction (Rice, Rohwer, Ariew
(in prep)).
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conditions. It is true, as Strevens says, that the quincunx describes
just those aspects of the causal process that make the difference to
the fact that the aggregate of the pellets approximates a normal
distribution pattern. It is also true that this is one part of Galton’s
explanatory strategy, the part where he justifies his statistical
assumption that biological characters approximate the normal
distribution. But, the reasons they do so is not Galton’s ultimate
aim. His aim is to explain the stability of intergenerational variation.
Distinguishing difference makers from non-differences makers no
more explains intergenerational variation than does Quetelet’s
distinction between constant and accidental causes of character
development (Ariew et al., 2015).

Contrary to Strevens, the idealizations used in explanations
across the sciences should not all be interpreted as distinguishing
causal and non-causal difference makers. Some do while some, like
Galton’s use of the normal distribution, do not (Rice, forthcoming).

5. Conclusion

The causal agenda set ever since the flagpole counter-example
to Hempel’s account of scientific explanation fails to appropriately
account for the nature of Galton’s influential and important
explanation for the law of heredity. Galton’s statistical explana-
tion is statistically autonomous: it explains reversion without
regard to the causes that actually underlie any individual case.
That does not mean that Galton believed there are no causal ex-
planations for any of the instances. Rather, it means that the
causes are irrelevant to the explanation of reversion. Reflecting
upon the three questions that Strevens articulates for a
Hempelian-post-flagpole agenda, we aver that Galton’s exem-
plarly explanatory strategy is best articulated by ignoring these
questions altogether.
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