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 Abstract 

 This paper aims to provide a fuller account of purely statistical pattern-level explanations –i.e. 
 those which explain macro-level events by invoking limit theorems. The statistical autonomous 
 explanation (SAE) account is modified via integration with the maximum entropy approach for 
 generating limit distributions. This achieves two important results: (1) the range of SAEs  is 
 vastly extended and shown to range over many different kinds of limit distributions; (2) the 
 modified account permits answers to questions about why these limit distribution patterns are 
 so common in nature; why these patterns are robust; and also, why these patterns are insensitive 
 to most lower-level details pertaining to the characters or events which comprise the statistical 
 ensemble. The modified account can be understood as a corrective for many extant accounts of 
 statistical pattern-level explanations which fail to answer these crucial questions.   
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1. Introduction 

In 1877, Francis Galton delivered a lecture entitled “Typical Laws of Heredity” to the Royal Institution in 
London whose purpose was to explain a curious pattern of heredity detected at the level of whole 
populations and over the course of generations. As he described it:  

In each generation there will be tall and short individuals, heavy and light, strong and weak, dark 
and pale; yet the proportions of the innumerable grades in which these several characteristics 
occur tend to be constant (Galton [1877], p. 1).  

The constant was the well-known “law of error” (which he called the “law of deviation”), a probability 
function previously discovered in a range of phenomenon from outcomes of games of chance to 
observational data to heights and chest sizes of soldiers. Its graphical representation is a bell-shaped 
probability distribution with a peak at the mean and slopes that trace the variance or spread around the 
mean. The phenomenon Galton wished to explain is why do the processes of heredity—assuming external 
conditions are constant—conform pretty nearly to the curve of deviation. The hereditary phenomenon has 
consequences for the efficacy of Darwin’s natural selection. It demonstrated that a central assumption of 
Darwin’s theory was wrong, that individuals do not “equally tend to leave their like behind them” (Ibid, 
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pg. 2) Consequently, selection for mean characters will not eliminate the extremes in the population, for 
the processes of heredity tends to preserve them. So, for example, children and grandchildren of tall 
parents tend not to be as tall; instead, they tend to revert to the mean height of the population.1   

Galton illustrated the law of deviation “in action” with an apparatus that he created, a shot-
dropping machine resembling a pachinko game, with rows of pins arrayed in a quincunx pattern (think of 
the face of the five on a six-sided die) and vertical compartments at the bottom that captured the piles of 
shot. Galton explained that “while the courses of the pellets are extremely irregular...you will observe the 
regularity of the outline of the heap formed by the accumulation of the pellets” (Ibid, p. 5). Runs of the 
quincunx explain how the distribution pattern emerges from the aggregate of a variety of micro-level 
events: "the collective actions of a host of independent petty influences in various combinations” (Ibid., 
pg. 5). Yet, as Galton was quick to point out, explaining how micro-events aggregate to form the curve of 
deviation is not the same as explaining how the whole distribution curve is maintained by the processes of 
heredity over the course of generations. Galton writes: "The conclusion is of the greatest importance to 
our problem. It is, that the processes of heredity must work harmoniously with the law of deviation, and 
be themselves in some sense conformable to it” (Ibid, pg. 8)  

In his lecture Galton sketched some potential answers, but he didn’t arrive at his famous and 
surprising answer until 1889. The maintenance of the bell-shaped stable distribution of characters over the 
course of generations is a mathematical consequence of the normal law. If a population is normally 
distributed in one generation (and external conditions are constant) it can be deduced from the normal law 
that the population of the next generation will also be normally distributed around the same mean and 
with the same measure of dispersion. What makes Galton’s explanation so surprising is that it refers to a 
mathematical idealization as opposed to an extant biological process. No real-world population is 
normally distributed because no real-world population is infinite in size and random in its sampling (that 
is what makes the explanation an idealized one). Nevertheless, large populations approximate the normal 
distribution. Even in 1877 Galton recognized the novelty of the kind of explanation he presented: “The 
typical laws are those which most nearly express what takes place in nature generally; they may never be 
exactly correct in any one case, but at the same time they will always be approximately true and always 
serviceable for explanation” (Ibid, pg. 17).  

 Galton’s novel use of statistics to explain a real-world phenomenon led him to develop the 
statistical techniques of correlation, linear regression, and a variety of standards for goodness of fit 
between data and theory, all still used by scientists. According to historian Stephen Stigler, Galton’s work 
“represents the most important step in perhaps the single major breakthrough in statistics in the last half 
of the nineteenth century” (Stigler [1990], p. 281). Further, Galton’s mathematical theory of inheritance 
was the basis for the 20th century synthesis of Darwinian natural selection and genetical theories of 
inheritance (Bulmer [2003], Fisher [1953]). Finally, in the realm of philosophy of scientific explanation, 
Galton’s references to the deductive consequence of a statistical/mathematical law breaks the mold of 
typical scientific explanations that many philosophers have been focused on since the mid-20th century 
which concern both causal facts and relations. 

According to Ian Hacking, Galton’s statistical explanation was a first of its kind in biology. Today, over a 
century later, statistical pattern explanations are commonplace, and not just in biology, but anywhere 
there are large-scale dynamical systems that are the aggregate effect of micro-scale processes, including 
(this is a partial list): evolving populations, thermodynamical systems, ecological systems, weather 

 
1 According to historian Stephen Stigler, Galton’s exposition was a better-presented version of the more important 
critique that Fleeming Jenkins famously challenged Darwin with Stigler ([2012]). 
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patterns, economies, chemical reactions, even earthquakes. Statistical pattern explanations predominately 
rely on limiting distributions, the normal law that Galton invoked being the most common. Limiting 
distributions capture the convergence of a sequence of distributions when the sequence is scaled towards 
an infinite value (Epps [2013]). More formally, the limiting probability distribution of some random 
sequence is the limiting distribution of some function of that sequence. However, not all limiting 
distributions generate the bell-shaped distribution pattern. There are others, including Poisson, 
exponential, and the power law, each revealed by a variety of statistical parameters, and each finding 
multiple instantiations in nature. The Poisson distribution frequently appears when one counts the number 
of times an event occurs per unit area or unit time and is hence applicable to a range of common events: 
network failures, number of website visitors, number of bubbles in glassware produced. The exponential 
curve appears over the waiting time for the first occurrence of an (memory-less) event: pandemics, 
spoilage time, compound interest. The power law appears as a functional relationship between quantities, 
where a relative change in one quantity results in a proportional relative change in the other quantity: 
magnitude of earthquakes, sizes of meteorites, losses caused by business interruptions from accidents 
(Newman [2017]). Despite these differences in the distribution and corresponding equations, they are all 
valuable to inquiry for the same reasons that Galton attributed to the normal law. They are never exactly 
correct in any given instance, but they are approximately true, and that is what makes them “serviceable 
for explanation”. To reflect this feature, Hacking calls Galton’s application of the normal law to explain a 
biological phenomenon a “statistically autonomous explanation” (SAE).   

 Despite its scientific import, philosophers of science have only recently begun to analyze the 
features of Galton’s statistical explanation for heredity as well as to examine statistical pattern-level 
explanations more generally. As regards the former, Elliott Sober ([1980]) claims that what makes 
Galton’s statistical explanation unique is the nature of the explanandum. The statistical variability enters 
into the explanation because “regardless of the underlying etiology” the normal distribution is a real 
phenomenon, it is subject to its own forces, and it obeys its own laws. The details of the individuals from 
which the population effect is comprised “are pretty much irrelevant”. Sober marks this as a feature of 
“population thinking” among Victorian scientists, in that it abstracts away from individuals (Sober [1980] 
p. 177). As regards the topic of statistical pattern-level explanations more generally, these kinds of 
explanations have recently received greater consideration. Prominent among the views which purport to 
subsume these kinds of explanations are Lange’s “really statistical” view (Lange [2013], [2016]); 
Strevens’ causal difference-making account (Strevens [2016]); Kaplan and Craver’s 3M/3M* mechanist 
view (Kaplan and Craver [2011]; Craver and Kaplan [2020]); and Ariew, Rowher and Rice’s statistical 
autonomous explanations view (Ariew et al. [2015], [2017]; Rice et al. [2019]).2 The relevant issue for 
many of these accounts is whether explanations that invoke limit theorems are causal or non-causal (see 
Ariew, 2017 et. al. for a rebuke). But, our interest is in the following three questions, prompted by 
Galton’s original discussion, and made urgent by the ubiquity of statistical pattern explanations in 
science3: 

 
2 In what follows, we avoid prolonged discussion of the rival accounts mentioned here given that our aim is to revise 
the SAE view since it represents the only account of statistical pattern-level explanation which attempts to answer 
each of the following crucial questions (Q1-Q3). 
3 This set of crucial questions (Q1-Q3) which we introduce as an adequacy benchmark for statistical pattern-level 
explanations generally resembles the set of questions which Batterman and Rice describe as requiring answers for 
the construction of what they term a “minimal model” (Batterman and Rice [2014]). The general resemblance 
suggests a complimentary relationship between the view presented here and their own. However, the view to be 
presented in this paper is focused specifically on statistical explanations oriented around limit distribution patterns, 
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Q1. Why are these limit distribution patterns so common in nature?  

Q2. Why are these limit distribution patterns robust and stable, insensitive to perturbations? 

Q3. Why are most lower-scale details irrelevant to generating the limit distribution pattern? 

We shall claim that while some of the extant accounts are more adequate than others in answering Q1-Q3, 
none of these accounts currently resolve these crucial questions. To remedy this lacuna, we argue for a 
modified and extended version of the SAE account. The account is both modified and extended by 
adopting a maximum entropy approach for generating models of the kinds of limit/probability 
distributions which are central in statistical pattern-level explanations (Jaynes [2003]; Frank [2009]). This 
achieves two important results. First, the range of the original SAE account is extended and is 
demonstrated to apply to a wide swath of different limit distributions. Whereas the original SAE view 
accounted mostly for patterns arising from the normal distribution, the modified account is applicable to 
cases which involve exponential, Poisson and power law distributions. Second, the maximum entropy 
approach for generating models of limit distributions contain the ingredients for demonstrating why 
lower-level details about most of the characters or events comprising the ensemble are irrelevant to the 
limit distribution pattern. As such, this enables the modified account to answer the crucial set of questions 
(Q1-Q3) referenced above, yielding a fuller and more satisfying account of statistical pattern-level 
explanations, and begins to capture Galton’s summary of its features. 

 This paper will unfold as follows. In section 2, the notion of statistical autonomy as exemplified 
in the Galton case and Ariew et al.’s ([2015], [2017]) SAE view is unpacked. In section 3, the notion of 
maximum entropy as a way of modifying the account is introduced. The SAE account is then both 
modified and extended by adopting the maximum entropy approach for generating models of limit 
distributions and is demonstrated to answer the set of crucial questions (Q1-Q3) requisite for being a 
fuller account of statistical pattern-level explanation. In section 4, two case studies of statistical pattern-
level explanations are shown to be assimilable to the modified SAE account. Section 5 concludes. 

2. Statistical Autonomy and the SAE Account of Statistical Pattern-Level Explanations 

2.1 The notion of statistical autonomy 

Ian Hacking begins his investigation of statistical autonomy as a unique explanatory property by 
revisiting the Galton case. Specifically, Hacking ([1990]) provides an analysis of the nature of Galton’s 
explanans, centered around making sense of Galton’s remark that the statistical law in this instance is 
“serviceable for explanation”. The key feature is its “autonomy”: “one can explain something by using a 
statistical law only if it is in some way autonomous, and not reducible to some set of underlying causes” 
(Hacking [1990], p. 181). Hacking contrasts his analysis from the debate concerning explanations 
invoking statistical laws that were popular at the time of his writings.  

First, to be a statistically autonomous explanation requires no ontological commitment to the 
“universe containing deeper and nonprobabilitist laws that entail the statistical behaviour” (Ibid). To 
encapsulate this idea, Hacking contrasts “autonomy” with “irreducibility”. Galton intended to explain 
what he believed was a well-confirmed phenomenon—the regular and law-like regularity of heredity 
patterns of families across generations. This leads to the second unique feature of Galton’s statistically 
autonomous explanation. Many philosophers interested in statistical and probabilistic explanation are 

 
and thus possesses a narrower yet novel scope since Batterman and Rice’s view operates at a higher level of 
generality. 
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concerned with explaining events that occur with some frequency (from seldom to frequent). Galton’s 
aim was not to explain an event but a robust phenomenon associated with heredity.  

A third unique feature of Galton’s statistically autonomous explanation concerns his novel 
interpretation of the bell-shaped distribution of characters. According to Galton’s contemporaries, most 
notably, the astronomer-turned-social scientist, Aldolphe Quetelet, the normal distribution is the limit of 
an aggregate effect of a lot of independent causes. Consequently, the presence of a normal distribution 
provides information about how each individual came to develop their traits. The mean height of a 
population or race represents the “constant” forces that determine a person’s height, while the dispersion 
around the mean is a measure of the possible effects of “accidental” causes that prevents an individual 
from attaining its true type-characteristic. According to Galton, the problem with applying Quetelet’s 
interpretation of the normal distribution is that it left the reason why heredity conforms to the law “totally 
unexplained”. Now, Galton is not denying Quetelet’s assertion that the normal distribution reduces to 
underlying causal behavior, as we acknowledged before, autonomy is not the same as irreducibility. 
Rather, the fact of reduction is irrelevant to the question of autonomy—why the processes of heredity 
maintain the whole distribution pattern —described by the normal distribution— over the course of 
generations. As Hacking puts it (crediting Victor Hilts): “where Quetelet was thinking of a central 
tendency, and hence of the mean, Galton, always preoccupied by the exception, was thinking of the tails 
of the distribution, and of the dispersion. Mathematically, speaking, the mean and the dispersion are 
necessary and sufficient for describing the curve—co-equals as defining properties...” but Quetelet and 
Galton attended to them very differently. In sum, in regards to Q3, when Galton spoke about statistical 
laws being “serviceable for explanation”, he was aware that he was explaining without references to the 
“host of petty independent causes” that concerned other investigators like Quetelet. 

2.2 Statistical autonomous explanations 

Where Hacking and Sober focus on the ontology of statistical laws in Galton’s explanation, the analysis 
of Ariew et. al. ([2015], [2017]) focuses on Galton’s use of a mathematical idealization to explain a 
biological phenomenon: “Galton’s case shows how a statistical model can be used to provide an 
autonomous explanation independent of any claims about what causal relationships are present in the 
world” (Ariew et al. [2015]). This provides the basis for their SAE account of statistical pattern-level 
explanations. SAEs involve the following two steps: 

Step 1. Minimal Material Conditions or MMCs 

On the MMC step, the real-world target system (usually, a population or ensemble of events) is made 
amenable to statistical analysis. Specifically, the target system is shown to satisfy the minimal material 
conditions (MMCs) requisite for representation as a certain stochastic ensemble. In the first step, Galton 
assumed that the characters in the population approximate the idealized normal distribution. The purpose 
of the assumption is to treat the biological phenomenon as a mathematical problem. The statistical 
assumption is warranted if a real-world population satisfies the following MMCs: (1) The population 
must feature characters that can be sampled randomly; (2) The trials by which they are sampled must be 
independent; (3) The trials must be sufficiently numerous (Ariew et al. [2017]). So long as the population 
can be shown to comport with these conditions, “it matters not whether the ensemble is composed of coin 
tosses, shots on target, heights of soldiers or biological characters…” the real-world population can be 
represented as approximating a normally distributed statistical ensemble  (Ariew et al. [2017], p. 64). The 
minimality of these conditions is intended to be suggestive of the potentially wide scope of application for 
this kind of statistical representation across a range of cases. It should be noted Ariew et al.’s MMCs are 
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consistent with many textbook descriptions of the normal distribution or the “central limit theorem” 
([Reid] 2013). 

Step 2. The Application of a Statistical Law/Fact/Theorem 

At this step, a statistical law/fact/theorem is applied to the statistical ensemble and the explanandum is 
deduced as a consequence of the law/fact/theorem’s application (Ariew et al. [2017], p. 67). In this second 
step, the explanandum—the stability of the normal distribution over the course of generations—is 
deduced as a consequence of the normal law without any appeal to the specific underlying causes or 
hereditary mechanisms that actually make up an instance of the phenomenon in the real biological world. 
Consequently, we have an explanation that features what Galton noted (in the “serviceable for 
explanation” quote, above). Since the explanation is an idealization, it will never be exactly correct in any 
one case. But, since real-world populations approximate the idealized distribution, the explanation will 
“most nearly express what takes place in nature generally” (Galton [1877]).  

 Ariew et. al. complete their analysis by addressing a further question: what is the advantage of 
statistically autonomous explanations over that of an explanation that cites biological causes or 
mechanisms?  

A response is issued as follows. The advantage of Galton’s SAE explanation is that it provides “extra 
explanatory information that an explanation that adverts to biological causes does not apply.” To illustrate 
this point, Ariew et. al. ([2015]) cite Woodward discussion of “complex” or “higher order” system 
explanations where the explanandum involves the large-scale behavior of an ensemble that is composed 
of individuals that vary in their individual trajectories (Woodward is specifically talking about gas laws):  

“There are a very large number of different possible trajectories of the individual molecules in 
addition to the trajectories actually taken that would produce the macroscopic outcome...that we 
would want to explain. In other words, no matter what the arrangement of the causes are, a 
particular ensemble level trajectory is highly likely” (Woodward [2003]).  

The statistically autonomous explanation provides this sort of information because it is not limited (as 
causal/mechanistic explanations are) to citing the actual causal trajectories of the individuals at the lower 
levels. For this reason, statistically autonomous explanations are both highly general and multiply 
realizable (even though they never describe any actual real-world instance).  

 Evaluation of this view can begin by recalling the earlier set of crucial questions (Q1-Q3) and 
assessing how it answers them. Concerning both Q1 and Q3, an answer is in part provided by the notion 
of MMCs. The kinds of pattern at issue (in this case, normal distributions) are common throughout nature 
since the conditions requisite for generating them are minimal: all that is required for a population to 
approximate this distribution is that it be amenable to random, independent sampling of sufficient 
numerosity. Additionally, most other lower-level details pertaining to the characters which comprise the 
ensemble are extraneous to generating the pattern and therefore irrelevant. Given that the necessary 
conditions for the generation and maintenance of the pattern are so minimal and abstract, the pattern is 
accordingly very robust. The initial hurdle of answering to Q1-Q3 and being a complete view of statistical 
pattern-level explanation is thus cleared on the SAE account.  

 While the SAE view of Ariew et al. shows promise in answering to Q1-Q3, one ancillary issue 
and a serious problem arise in considering the view. First, are there SAEs which invoke limit distributions 
aside from normal distributions or is the Galton case and are regression cases more generally a set of 
special cases? For example, power law, Poisson, exponential and gamma distributions are pervasively 
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applied in science. Power law distributions, to take just one example, have been identified as conforming 
to data which captures the occurrence of extinction events, earthquakes, word frequency in books and 
seemingly everything else from soup to nuts (Newman [2006]). Does the SAE account have anything to 
tell us about these limit distributions and more broadly, what is the scope and range of this view?  

 Finally, the SAE view encounters a substantive problem: their description of the MMCs for 
generating the normal distribution and thus their account of the pattern’s ubiquity in nature is likely false. 
Ariew et al. ([2015], [2017]) adopt the common line that the wide applicability and ubiquity of the normal 
distribution pattern in nature owes to something like the minimal requirements of the central limit 
theorem (CLT). Roughly, the CLT implies that if some random variable, X, is the sum of a large number 
of small and independent variables (X1…Xn), then, irrespective of their distributions, X will be a normally 
distributed variable. The CLT requires that (X1…Xn) must be identically and independently distributed 
about some mean and variance. That is, (X1…Xn) must all share the same probability distribution 
(identicality condition) and (X1…Xn) must be mutually independent events (independence condition). This 
is commonly known as the “i.i.d.” requirement. As the number of i.i.d. variables for X increases, the 
average converges on a normal distribution. This is ostensibly what drives Ariew et al.’s claim that 
random independent sampling of sufficient numerosity is what allows a real-world population to 
approximate a normal distribution (Ariew et al. [2017]). 

 The CLT narrative about the commonness of the normal distribution pattern is problematic for 
two reasons. First, the identicality condition is a restrictive one and so many cited instances of the normal 
distribution will fail to satisfy it. Lyon illustrates this point with the sort of case which is considered a 
paradigmatic instance of the normal distribution via the CLT narrative, the kind encountered in primers 
on statistics (Lyon [2014]). If a baker produces 100 loaves of bread and adheres to a recipe which yields 
loaves with an average weight of 100 grams, there will obviously be some loaves which weigh marginally 
more or less than others. Can the CLT explain these marginal differences? While the variables which 
comprise the weight of the loaf (salt, sugar, flour, yeast, water) may satisfy the independence condition, it 
is doubtful they satisfy identicality. Plausibly, the variances of each of these variables are different; for 
instance, the variance of salt is not the same as the variance of water. So, this case fails to satisfy 
identicality and by extension the i.i.d. requirement for the CLT. And likewise for many other such cases 
(Lyon [2014]). 

 Additionally, more careful investigation has shown that many of the cited instances of the normal 
distribution pattern turn out to be cases of the log-normal distribution (Lyon [2014]; Weatherall [2013]). 
In log-normal cases the multiplicative (not summative) product of many independent random variables is 
ascertained. This involves the logarithm of a random variable’s probability distribution, not the random 
variable’s probability distribution itself (Limpert et al. [2001]). It turns out that many cases of normal 
distributions are actually instances of these log-normal distributions (Weatherall [2013])4. If one of the 
stated goals of Ariew et al.’s SAE view is to demonstrate the wide scope of the normal distribution, then 
the CLT narrative they adopt likely fails in this task for the above-going reasons: first, the identicality 
condition of the i.i.d. requirement is restrictive and thus not met in many cases and second, if many 
purported instances of the normal distribution pattern turn out to be cases of log-normal distributions, 
then this troubles claims about the prevalence of the normal distribution pattern in nature. The CLT type 

 
4 One well-known instance of this confusion occurred in early statistical models in finance. Early on, stock prices 
were thought to fluctuate randomly in a way which conformed to the normal distribution. It was later discovered that 
this was false; the random fluctuation of stock prices better approximates a log-normal distribution (MacKenzie, 
[2003]; Weatherall [2013]). And similarly for many other phenomena that were originally though to be normally 
distributed. 
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account which Ariew et al. adopt fails in its intended aim to demonstrate the wide applicability of their 
view since its actual domain of application is fairly narrow.  

3. Modifying the SAE Account: Limit Distributions and Maximum Entropy 

If limit/probability distribution patterns represent a core set of statistical patterns, then plausibly, building 
a fuller account of statistical pattern-level explanation warrants closer engagement with them. Indeed, 
these patterns act as the common denominator for statistical pattern level explanations. Once it is 
demonstrated that the pattern is instantiated in some population or group, certain explananda can be 
deduced from this and further facts. That is, to answer Q1, “why are they so pervasive in nature,” we 
attend to the question of how these limit distribution patterns are generated. 

 Our response begins with adopting a maximum entropy (ME) approach (Jaynes [2003]; Frank 
[2009]). On this line, a limit or probability distribution pattern is isolated via the construction of a neutral 
generative model where certain information constraints are set and entropy maximized for all of the 
information which has not been selected for.5 Unpacking this statement can begin with a more detailed 
description of the ME approach. While entropy’s conceptual origins are traceable to physics, particularly 
the statistical mechanics of Boltzmann and Gibbs, the concept found application in information theory.6 
Therein, entropy is understood as randomness or uncertainty (Cover and Thomas [2006]). Information is 
measured, inversely, as the amount by which a message reduces entropy (Stone [2018]). More formally, 
let X be a discrete random variable with possible outcomes x1…xn where these outcomes occur with 
probability P(x1)…P(xn). Entropy or H is defined as: 

𝐻(𝑋) = 	−	(𝑃	(𝑥!) log 𝑃	(𝑥!)
"

!#$

 

Where sigma expresses the sum over the possible values for the variable. 

In terms of limit distributions, models with less information imply higher entropy and so to maximize 
entropy for some variable, one effectively minimizes the amount of prior information which is built into 
the distribution. The maximum entropy approach for generating limit distributions was pioneered by E.L. 
Jaynes who expresses his maximum entropy principle as follows: 

 Maximum Entropy Principle. If a certain probability distribution maximizes entropy subject to 
 certain constraints representing our incomplete information, this is the fundamental property 
 which justifies our use of the distribution for inference; it agrees with everything that is known 
 but carefully avoids what is unknown (Jaynes [1990]). 

Per the ME principle, the lack of prior information baked into the model is what ensures that the model is 
both unbiased and robust. The model only preserves information which has been encoded for by the 
relevant information constraints. Accordingly, the distribution which maximizes entropy is the one which 
contains the least amount of implicit and unwarranted assumptions. 

 
5 The “neutrality” of the model owes to the fact that the model maximizes entropy, a detail which will be explained 
in short order. 
6 The closeness of the information theorist’s concept of entropy and the physicist’s is a topic worthy of further 
exploration. However, this cryptic quote from Claude Shannon, the forefather of information theory, demonstrates 
the potential for cross-application: “a basic idea in information theory is that information can be treated very much 
like a physical quantity, such as mass or energy.” (Shannon [1985]). 
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To make this more intuitive, consider the following example. Suppose a hundred people are to be 
interviewed and asked to randomly think of a number between one and ten. You are asked to imagine the 
possible distributions that might result from recording their answers on a graph where the X-axis 
represents the ten possible responses (1-10 inclusive) and the Y-axis represents the fraction of people who 
submitted each number as a response. Additionally, you do not adopt any additional constraints on 
information. The least informative distribution for this exercise given your lack of information constraints 
would be one in which each number is selected with equal probability —in this case, each possible 
answer receives 1/10th of the distribution. This would yield a uniform distribution or a straight line in 
graphical terms –each possible number value receives 1/10th of the responses. Consequently, the uniform 
distribution would represent the distribution which maximizes entropy in this particular case since there is 
no less informative distribution for this example. This is the distribution which contains no implicit and 
biased assumptions.   

 While this general description of the ME approach is informative, a more concrete case featuring 
the construction of a neutral generative model is desirable. Suppose one wishes to construct a model for 
some process and the aim is to capture a normal distribution. The modeler sets information constraints for 
the mean and variance for some distribution. All other small-scale fluctuations and processes not coded 
for by these constraints are allowed to cancel or average out in long run. In the limit, the normal or 
Gaussian distribution is converged on or becomes a basin of attraction for the pattern. The upshot is that: 

In terms of information, the final pattern reflects only the information content of the system 
expressed by the constraints on randomness; all else dissipates to maximum entropy as the pattern 
converges to its limiting distribution defined by its informational constraints (Van Campenhout 
and Cover [1981]). 

 A crucial insight offered by the ME approach which materializes from the foregoing description 
is that it capably addresses the fundamental question (i.e. Q3) about why so many of the lower-level 
details included in samples which yield limit distribution patterns are irrelevant.7 Limit distribution 
patterns emerge from systems which are complex and involve a plethora of small-scale subprocesses and 
fluctuations; what Galton referred to earlier as “petty influences.” However, the very procedure for 
capturing limit distributions is demonstrated to contain the ingredients for eliminating most lower-level 
detail which is irrelevant to the higher-level pattern. On the ME approach, the selected information 
constraints are preserved. But all other detail is cancelled out as entropy is maximized for all which is not 
coded for by the information constraints. In fact, the cancelling out or entropy maximization for this 
unselected information is what makes the limit distribution a basin of attraction for the process.  

Additionally, the modified view avoids the implausibility which surrounds the CLT narrative 
which the original SAE was wrongly founded upon. The ME approach does not require the satisfaction of 
an i.i.d. requirement. By fixing both the mean and variance of the distribution while maximizing entropy 
for all else, we arrive at a normal distribution. And a distribution which maintains its mean and variance 
through repeated operations on it is a normal distribution. This fortunately avoids the problem of having 
to satisfy something as restrictive as the identicality condition in order to generate a normal distribution. 

 A natural nexus thus emerges between the ME approach and the SAE account. Recall that on the 
SAE account, a necessary step in SAE construction was to demonstrate that the real-world ensemble 
satisfied the minimal material conditions for approximating a particular kind of limit distribution. In their 

 
7 As S.A. Frank phrases this question, “what is the relationship between the processes which aggregate and the 
pattern itself?” (Frank [2009], p. 1178). 
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Galton case, which involved the normal distribution, these conditions were random, independent samples 
of sufficient numerosity (Ariew et al. [2017]). We shall argue that the coded for information constraints 
can play the role of the minimal material conditions for generating SAEs; indeed, the line of the ME 
proponents is strikingly similar to the SAE proponents. The pervasiveness of these limit or probability 
distribution patterns in nature owes to the minimality in what is requisite for generating them. A 
population’s satisfying these conditions —being conformable to a modeling process whereby the relevant 
information constraints can be imposed— is sufficient for demonstrating that the population approximates 
a particular kind of limit distribution. 

 Returning once again to a former question we may again ask what is the scope and range of the 
modified SAE view? Can the view account for limit distributions beyond the normal distribution? 
Incorporating the ME approach into the SAE view encourages an affirmative answer. As S.A. Frank 
argues, most of the common limit distribution patterns can be subsumed by the ME approach (Frank 
[2009]). The following table (Table 1) summarizes a set of common limit/probability distribution patterns 
and their corresponding minimal material conditions or information constraints.8  

Limit/Probability Distribution Pattern Minimal material conditions/ Information 
Constraints 

Normal • Random independent sampling 
• Mean and variance 

Poisson • Random independent sampling 
• Discrete time 
• Number of events per unit area/time where 

N (the number of Bernoulli trials) is 
sufficiently large (e.g. N > 20) and the 
probability of some event is sufficiently 
small (e.g. P < 0.05). 

Power Law • Random independent sampling 
• Can we obtain a functional relationship 

between two quantities where a change in 
one quantity occasions a proportional 
change in another? 

• Scale invariant 
Exponential • Random independent sampling 

• Memoryless process  
• Continuous time 
• Sufficient number of events per unit 

area/time and the probability of the relevant 
event is sufficiently small 

Table 1. Limit distributions and their corresponding minimal material conditions 

The modified SAE account achieves two important results: first, by incorporating an ME approach into 
the view, the account can be extended to treat probability/limit distributions which go beyond the normal 
distribution. This is a significant result. If an important class of the statistical patterns which are deployed 
by scientists to account for natural patterns are the probability/limit distributions cited above, then the 

 
8 Other distributions which are amenable to a maximum entropy analysis and not included in table 1 include the 
Gamma, LaPlacean, Pareto and Log-Normal distributions. 
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modified SAE view enjoys a considerable range of application. Further, the modified view describes the 
process by which these limit distributions are demonstrated to be applicable to real-world ensembles: this 
is of course the verification that these ensembles satisfy the minimal material conditions for generating 
these limit distribution patterns. Finally, the modified approach avoids the plausibility issues which 
afflicted the CLT narrative of the original view.  

 Aside from extending the SAE view to a range of common limit/probability distributions, 
incorporation of the ME approach permits fuller answers to be issued in response to the crucial set of 
questions (Q1-Q3): 

Q1: Why are the limit distribution patterns so common in nature? 

Because the requisite conditions for generating these patterns are so minimal. The minimality is evinced 
in the case of the normal, exponential, Poisson and power law distributions. The ME approach fills out 
these minimal material conditions in terms of information constraints. For example, any process which 
preserves information about the mean and variance of the sample but allows all else to maximally tend 
towards entropy admits of a normal distribution. Nature is replete with processes that are conformable to 
this kind of analysis, ranging from shots at a target to the heights of Scottish soldiers as Ariew et al. 
([2015], [2017]) observe. 

Q2: Why are these limit distribution patterns robust? 

 Because the higher-level limit distribution pattern is insensitive to most lower-level details. This accounts 
for the stability of these patterns under perturbations (Frank [2009]). Since these patterns are minimally 
generated, coding for only a few abstract, statistical properties, they remain stable under interventions. 

Q3: Why are most lower-level details irrelevant to generating the limit distribution pattern? 

Per the ME approach, these limit/probability distribution patterns are generated from neutral generative 
models where only a few properties are selected for as information constraints. Generative models are 
models of the conditional probability of some observed variable given a target variable. The neutrality 
issues from the fact that these models make no further assumptions about the distribution they seek to 
capture; i.e. they maximize entropy for all variables external to the observed and target variables (Frank 
[2016]). Entropy is maximized for all other small-scale processes and details, smoothing out these details 
in the aggregate. In the language of the SAE account, satisfaction of the minimal material conditions is 
sufficient to generate the pattern and all else is extraneous. The very ME process of constructing a neutral 
generative model for the limit distribution pattern contains the ingredients for discarding most lower-level 
details.  

To sum up, the modified SAE account which is merged with the ME approach for generating 
limit/probability distributions achieves two primary results: first, the SAE view is shown to include a 
wider range of application, subsuming many of the core limit/probability distribution patterns which fund 
statistical pattern-level explanations while avoiding earlier problems. Second, the modified SAE account 
provides direct and substantive answers to the crucial set of questions (Q1-Q3) which are requisite for an 
adequate account of statistical pattern-level explanation. 

4. The Modified SAE Account in Application: Case Studies 

The motivation for investigating limit theorems as an explanatory tool is that the statistical patterns are, as 
the questions we posed about them, common in nature, robust and stable –even when the lower-level 
details of the ensemble are varied. In the following section we investigate two case studies to demonstrate 
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how the modified SAE accounts for these features of limit theorem explanations. We chose one instance 
that is well-discussed in the philosophy of biology literature, the application of the central limit theorem 
to investigate evolution by genetic drift, and one that is not so common: the investigation of the frequency 
of earthquakes using the power law. 

4.1 Case study 1: Genetic drift 

Genetic drift’s explanatory contributions in population biology are multifarious. These contributions 
include why trait frequencies in a population depart from expectation values (where these values are 
determined by selection pressures); why these departures are greater in smaller as opposed to larger 
populations; and why trait frequencies within a population featuring no mutations, migration or selection 
pressures still change dynamically.  

 Debates over the nature of drift and how to differentiate this concept from selection in population 
biology remain live. On one approach, drift is regarded as sampling error (Beatty [1984]; Plutynski 
[2005]). On another set of views, drift is understood as a causal process or an aggregation of causal forces 
(Sober [1984]; Stephens [2004]; Millstein [2006]; Gildenhuys [2009]). Alternatively, Walsh et al. 
([2002]) and Matthen ([2010]) argue for a mathematical/statistical characterization of a certain kind of 
drift which is meant to explain departures from expectation values of trait frequency. It is this view which 
we shall argue admits of a modified SAE interpretation. 

 Trait fitness is essential to explaining changes in biological populations. The distributions of trait 
fitness are taken to both predict and explain structural changes in a population undergoing natural 
selection (Walsh [2015], p. 477). A trait’s fitness is equivalent to its tendency to increase or decrease its 
relative frequency in a population. The concept of genetic drift enters the picture in accounting for 
departures from expectation value, where these values are determined by selection pressures. Of crucial 
importance is the Hardy-Weinberg law which is summarized as follows: 

The Hardy-Weinberg Law says that in infinite populations (of diploid organisms) there is no 
change in gene frequencies when there is no variation in gene fitnesses. But natural populations 
are finite in size; often they are small. In finite populations there will always be some non-
negligible chance that trait frequencies will diverge from expectation. (Walsh et al. [2002], p. 
456). 

The divergence from expectation value can be accounted for by genetic drift in something like the 
following way: 

 …in these cases what happens is that the distribution of fitnesses in the population yields a 
 prediction concerning the way in which a population will change. Drift is manifested as a 
 difference from the outcome predicted by the fitnesses in the population. The law of large 
 numbers tells us that the likelihood of significant divergence from these predictions is an inverse 
 function of the size of the population. The small size of a population increases the chances of 
 error. (Walsh et al. [2002], p. 459). 

In order to examine how drift is isolated from selection effects, consider the following simple equation for 
trait fitness or wi. The fitness w of some trait i can be modeled as follows (Gillespie [2004]): 

𝑤! =	𝜇! −	𝜎!%/𝑁 

Where 𝜇! is the mean reproductive output of i individuals, 𝜎!% is the variance in reproductive output of i 
individuals and N is the population size parameter. Variance is often associated with “genetic drift” or the 
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total number of organisms in some population which either fail to reproduce or perish. In stochastic terms, 
per the Hardy-Weinberg law, the amount of variation turns out to be inversely proportional to the size of 
our population —the smaller the population, the greater the variation is expected to be and vice versa (Orr 
[2007]). Thus, drift can be eliminated from this equation by scaling the population parameter (N) towards 
an infinite value. As N approaches an infinite value, variance converges on zero. This allows selection 
effects or mean reproductive output to be isolated from drift. 

 How might this conception of genetic drift be enlisted in an explanation? Consider two 
populations (P1 and P2) which share the following initial conditions: (1) They are both of finite but 
different sizes; (2) They share the same traits and these traits have identical initial frequencies; (3) They 
both are expected to undergo the same selection pressures and there are no mutations or migrations. We 
may ask why is it that we expect to see greater departures from expectation value of trait frequencies in 
the smaller population, P1, than the larger population, P2? What ultimately explains the difference in P1 
and P2 with respect to their expectation values is the kind of drift mentioned above: we expect greater 
drift in P2 than P1 owing to the respective differences in population size. 

For clarity’s sake, the kind of drift case mentioned above can be analogized to a coin case as follows. Let 
P-alpha be analogous to a run of coin tosses in which a fair coin is flipped ten times, with results tallied. 
Let P-beta be analogous to a trial run of coin tosses in which we flip a fair coin one hundred times. Why 
do we expect to see a larger divergence from expectation value (where this divergence is taken to be 
analogous to drift) in P-alpha relative to P-beta? An explanation can be provided which invokes 
something like the law of large numbers, which we define informally as expressing that the average of the 
results of trial runs of an experiment will likely come closer to the expectation value as trial runs are 
increased (Walsh et al. [2002]). Effectively, the law of large numbers tells us that the likelihood of greater 
divergence from expectation value is an inverse function of the size of population (Crow and Kimura 
[1970]). In the coin case, this can be demonstrated by conducting one hundred trials of P-alpha type 
tosses and obtaining the average. This can then be compared with the results of one hundred trials of P-
beta type tosses, yielding a corresponding average. Given the comparative size of P-alpha to P-beta as 
well as the law of large numbers, we expect to see greater divergence (drift) in P-alpha relative to P-beta.  

 Returning to the biological populations of the initial drift case, (P1 and P2), this kind of 
explanation can be demonstrated to admit of a modified SAE interpretation as follows. First, it is assumed 
that the trait distributions in both populations approximate a certain kind of limit distribution: namely, a 
normal distribution. Establishing this fact requires checking that both populations satisfy the MMCs. 
Notice that both populations can be thought of as processes involving random, independent sampling. 
These ensemble or population features are what cement the analogy between the expected drift case and 
the toy coin case just described. Indeed, it is this very underlying assumption that drove the plausibility of 
the sampling error interpretation of drift. In terms of the maximum entropy approach, the Gillespie 
equation, which expresses trait fitness, codes for both mean and variance. Here, the statistically 
autonomous character of the explanation manifests: most lower-level micro-causal details of the 
populations are ignored in thinking of them as approximations of normally distributed ensembles.9 Once 
this step is completed, we then apply a statistical law/fact/theorem to our target systems represented as 
ensembles. In this case, the amount of drift or variance can be determined via inspection of the variance 
parameter in the foregoing equation. In P1, the smaller population which ipso facto includes more 
variance, the amount of expected drift is less than P2 which accounts for the greater departure from 
expectation value in P1 versus P2. Per the law of large numbers as it relates to the Hardy-Weinberg law, 

 
9 The notion of drift-based explanations as ignoring most details is shared in Matthen’s characterization of drift 
explanations as statistically abstractive explanations (Matthen [2009]).  
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the smaller size of P1 helps to explain the greater amount of drift in that population relative to P1. Given 
P1’s smaller size, it is further away from Hardy-Weinberg equilibrium than P2. A modified SAE 
interpretation thus materializes in this genetic drift case. 

4.2 Case study 2: Earthquakes 

Suppose at some geophysical region, R, many earthquakes of smaller magnitude are observed relative to 
earthquakes of larger magnitudes. A natural question is to inquire why this is so. One means of response 
involves inspection of the geophysical specifics which pertain to R in an effort to reveal some underlying 
mechanism. Another more statistical and pattern-oriented approach involves reference to the Gutenberg-
Richter law (GRL) in seismology. Per GRL, earthquake magnitudes and the number of earthquakes at a 
given region approximate a power-law relationship (Bak [1996]). This can be formally expressed as 
follows: 

log 10 	N	 = a − bM 

Where N is the number of events with a magnitude greater than or equal to M. Both a and b are constants. 
“a” is a parameter representing total seismicity and “b” or the “b value” is a scaling parameter which 
relates the number of large events to small ones. In seismically active regions, the b value is often near 1 
(Bak [1996]). This implies that for earthquakes of magnitude 3, there will be ten times as many quakes 
with a magnitude of 2 and 100 times as many quakes with a magnitude of 1. Finally, a logarithm is 
deployed since a histogram of quantities which are power law distributed can be graphically converted 
into a straight line at logarithmic scales; e.g. a log of the frequency declines linearly with a log of the size 
(Newman [2006]). Somewhat astonishingly, GRL has been confirmed as an empirical, seismological law 
for up to 8 orders of magnitude on the Richter scale (Smith [1981]). 

 Understanding the significance of GRL necessitates further examination of power laws. A power 
law expresses a functional relationship between two quantities where a relative change in one quantity 
occasions a proportional, relative change in the other quantity. This change is independent of the size of 
the quantities. A power law can be expressed in generic form as follows (Frank [2009]): 

Power Law in generic form: Y = k Xa 

Where X and Y are the two quantities, a is the law’s exponent and k is some constant. Additionally, power 
laws feature the property of scale invariance. This means that changes in frequencies remain constant at 
all scales. Another way of putting the point is that power laws have fractal properties (Mitchell [2009]). 
This special feature accounts for both the robustness and stability of power laws. Power laws graphically 
feature a characteristic long tail (see Figure 1 below). 
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 Figure 1. Generic graphical representation of a power law curve 

Returning to our earlier explanandum –viz. for some region R, why are there many more earthquakes of 
smaller magnitudes than earthquakes of larger magnitudes? –we can provide a partial statistical pattern-
level explanation as follows. Per the GRL, for any geophysical region, earthquake magnitudes and 
frequencies can be shown to follow a power law distribution. And the power law distribution expressed 
by GRL implies that relative to earthquakes of larger magnitude, there will be many more earthquakes of  
smaller magnitudes. Notice that GRL posits that frequencies stand in an inversely proportional 
relationship to magnitude. Since the GRL is an empirical law, this applies to our region of interest, R. 
Thus, there are many more seismic events of smaller magnitudes than larger ones at R. 

 Of interest for our purposes is whether this partial statistical pattern-level explanation can benefit 
from treatment as a modified SAE. Does the maximum entropy approach have any contribution to make 
in enhancing this explanation? In the earthquake case, a statistical pattern which ranges over a diverse set 
of phenomena —i.e. many regions of diverse geophysical detail— is captured by an empirical law or the 
GRL. Accounting for the generation of this pattern —namely, that earthquakes frequencies and 
magnitudes are always power law distributed— can be treated by an SAE which demonstrates that this set 
of phenomena satisfies the MMCs for generating a power law distribution. This might involve the 
following two MMCs: (1) That there be a functional relationship between two quantities; (2) That this 
relationship exhibits scale invariance. Notice that in the earthquake case, per the GRL, we have two 
quantities (earthquake magnitude and frequency) which stand in such a functional relationship. Also, this 
relationship is scale invariant.  

 The contribution of maximum entropy and information constraints enters in the following way. 
Answering the question of why power laws are so common in nature, S.A. Frank explains as follows: 

 Power laws arise by aggregation over many multiplicative processes, such as growth. Many 
 processes in nature apply a recursive repetition of a simple multiplicative transformation, with 
 some randomness…Aggregation over a random multiplicative process often erases all 
 information except the average logarithm of the multiplications. (Frank [2016]). 

Setting the information constraints to code for two quantities (e.g. earthquake frequency and magnitude) 
and allowing entropy to be maximized for all other random fluctuations and processes effectively 
produces the power law distribution. This is precisely the kind of constraining of information which is 
operative in our seismological case. Other details which are irrelevant to producing the power law pattern 
are allowed to cancel out and are thus irrelevant. The pattern is common since, per Frank, the kinds of 
multiplicative processes which involve recursive repetition are ubiquitous in nature. And the pattern’s 
generation being dependent on so few constraints in addition to the property of scale invariance accounts 
for both its robustness and stability.  

5. Conclusion 

The central task of this paper has been to modify the original SAE account in order to provide a fuller 
account of statistical pattern-level explanations. The modified account, which adopts a maximum entropy 
approach to understanding limit distributions, has been demonstrated to answer the crucial set of 
questions (Q1-Q3) which were introduced as an adequacy benchmark on statistical pattern-level 
explanations. Further, one advantage of the modified account has been the considerably greater range of 
application this view possesses over the original SAE view. Adoption of the maximum entropy approach 
thus enables the modified view to treat a larger set of limit distributions.   
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 One can begin to appreciate the advantage of the modified account’s increased range by 
considering the way in which limit distributions feature prominently in model-based explanations of 
complex systems such as the earthquake case of 4.2. The increasing focus among scientists on large scale 
dynamical systems that are pervaded by complexity prioritizes a solution of the following modeling 
problem. Complex systems include the following three features: (1) they include an abundance of 
potentially relevant mechanisms across many length scales; (2) these systems often have fuzzy or 
indeterminate boundaries; (3) many system-level processes are laden with contingency or chaos (Harte 
[2011]). A further complication is that in complex systems, macro-scale behavior is often not predictable 
from the micro-states of the system (Bak [1996]). As such, an attempt to parameterize all of the potential 
mechanisms relevant to capturing the behavior of such a system would be folly.  

 How then does one grapple with the task of modeling complex systems? A solution often takes 
the form of attempting to identify a macro-scale pattern of the system which is often by necessity both 
abstractive and statistical (Mitchell [2009]). A subset of these patterns are explanatory, orienting around 
common probability/limit distributions where the phenomenon of interest can be accounted for by the fact 
that the target system satisfies the requisite conditions for approximating these distributions.10 This 
proved to be the breakthrough insight by Galton –patterns of intergenerational heredity could be 
accounted for by the fact that his target system (populations) satisfied the conditions for approximating 
normal distributions and thus feature a reversion to the mean in the distribution (i.e. heredity) of traits. 
Thus, a viable account of statistical pattern-level explanation demands closer engagement with these 
limit/probability distributions. The modified account embraces this challenge and thus is especially well-
suited to subsume these kind of macro-level pattern explanations which are increasingly the coin of the 
realm in the scientific modeling of complex systems.  

A further desideratum of a viable account is that it should provide answers to the set of crucial questions 
(Q1-Q3) in order to demonstrate the explanatory force of these limit distributions. In part, this is what 
makes the account explanatory rather than merely a form of curve fitting. The commonness of these 
distributions, their robustness and their insensitivity to most lower-level detail are important properties 
that must be accounted for if the explanatory quality of these distributions is to be made manifest.  

 The SAE account of Ariew et al. ([2015], [2017]) represented a promising view inasmuch as it 
correctly identified the relevant set of questions for a viable account of statistical pattern-level 
explanation. However, this view foundered in treating only one kind of limit distribution and relied upon 
a false CLT-driven narrative which produced only false answers to the crucial questions. The modified 
SAE view represents a superior alternative. By adopting the maximum entropy approach for generating 
limit distributions, the modified account ranges over a large swath of limit distributions, thus expanding 
its scope for statistical pattern-level explanations. Further, the modified view provides satisfying answers 
to the crucial set of questions, thus meeting a necessary condition for being an adequate view of statistical 
pattern-level explanation. The heightened emphasis on complex systems throughout science and the 
mostly statistical methods used to understand them calls out for an adequate view of statistical pattern-
level explanation. The modified view stands as a useful tool for gaining insight into a rapidly growing 
area of scientific explanation and methodology.  
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